
Observability and Maturity Levels

Lauri Humina, lauri.humina@wakaru.fi
Chief Digital Officer, Wakaru Oy

linkedin.com/in/laurihumina

Understanding Observability

• Exactly “how” can the internal state of a system be known?

With proper applications in place, forms of communication
called signals are emitted that provide quality information to
monitor the internal state of the system known as Observability

• Examples of Signals

• Metrics
• Events
• Logs
• Traces

• Data emitted and collected from these signals
• Telemetry

Metrics, Events, Logs, and Traces (MELT)
These are the essential data types for Observability. When we instrument everything and use MELT to
form a fundamental working knowledge of connections—the relationships and dependencies within the
system—as well as its detailed performance and health, exemplifies Observability.

Traces, or more precisely,
“distributed traces”, are samples of
causal chains of events or
transactions between different
components in a microservices
ecosystem

Logs are the original data type; in
their most fundamental form, logs
are essentially lines of text a system
or application produces when
certain code blocks are executed

Metrics are the values pertaining to a
system/application at a certain point
in time

Events are specific sequences of
occurrences that take place within a
system being monitored

Why Is Observability Important?

Knowing the internal state of a system
leads to understanding through:

• Better insight into system behaviors
• Monitoring system performances
• Helping troubleshoot problems
• Providing real-time monitoring instantly
• Increased security
• Being cost effective
• Scalability

“One of the important things that
Observability enables is the ability
to see how your systems behave.”

Josep Prat - Open-Source Engineering
Director

Observability provides insight into the functioning of a system and enables teams to make informed
decisions about the system’s health and performance helping to ensure reliability and availability.

Who are the consumers of Observability?
Operations Engineer QA/Test Engineer Developer Security Engineer Leadership
• Wants to know if

systems are meeting
the demands of
customers

• Wants to reduce
signal to noise ratio in
alerts

• Wants to correlate
data across
distributed systems
and get to the root
cause faster

• Wants to know if
systems are
configured with best
practices

• Wants to know if all
systems are patched

• Wants visibility into
thresholds and
patterns; what is
normal vs an anomaly

• Wants to know how
tests impact the
system

• Wants contextual data
about bugs

• Wants to know about
test coverage

• Wants to understand
how the new features
are functioning

• Wants visibility into the
overall health of the
system as tests
execute various areas
of the codebase

• Wants to know how
software can be
optimized

• Wants to understand
performance impact of
changes

• Wants to be able to
troubleshoot issues

• Wants to know how the
pipeline and systems
are performing

• Wants to be able to
trace transactions
through the entire
system

• Wants contextual
information when
failures occur

• Wants to know if
systems are secure

• Wants to know
what/where software
has been deployed

• Wants to know patch
versions

• Wants to ensure
compliance with
corporate standards
and best practices

• Wants to make sure no
new vulnerabilities are
being introduced with
applications as they
are being developed

• Get real-time analysis
of security alerts
generated by
applications and
network hardware

• Wants visibility into
business KPIs

• Wants to know about
issues and risks

• Wants assurances that
systems are
performing and costs
optimized

• Wants visualizations
and reports that
reduce signal to noise
ratio

Why traditional monitoring is not enough?

1. Lack of a Holistic Practice Understanding

● In the new world of distributed
architecture, software delivery
from multiple teams brings the
challenge of multiple
Observability approaches

● This commonly causes delays in
finding issues when incidents
occur

2. Technology Silos

• Delivering software in larger
enterprises often involves a
mixture of technologies, not
uniform cloud-only deliveries

• Connecting all components to
get the big picture might be
difficult

The move to the cloud is often
not the only transformation
that is happening. It goes hand
in hand with build, test,
pipeline automation, and
Observability.

Teams may accelerate
in deployment frequency, but
without good Observability in
place, they may struggle to
understand the impact in
production.

3. Lack of Understanding Production

With so many new practices,
teams might struggle covering all
of them. Building robust Site
Reliability Engineering might be
one of the practices they struggle
with.

High employee churn in teams
means skill retention is
challenging. Hence, Observability
is key to keep the organizational
knowledge.

4. Skill Retention

5. Ensuring Compliance
Cloud and container deployments combined with CI/CD make it much
easier to deploy continuously and push out new services in minutes.

However, being compliant - knowing who does what, when - becomes
more important than ever before.

Observability Maturity Model

Observability Maturity Model example
R

el
ia

bi
lit

y
an

d
C

us
to

m
er

 S
at

is
fa

ct
io

n

Level 1
Monitoring

Level 2
Observability

Level 3
Causal Observability

Observability Maturity

Level 4
Proactive Observability

with AIOps

Why Is Maturity Model Level 1 Not Enough?

● Limited insights into the overall environment - not “big picture” so
the health of the system is not known

● No longer adequate for the “always-on” society

● Setting up monitoring requires a lot of manual work

● Identifies something is broken but does not point at what

● The need to do root cause analysis and impact analysis manually

● Can detect only known types of failures

Maturity Model Level 1 - Monitoring

Monitoring
Uses basic traffic light monitoring to understand the availability of the individual components

that make up the IT services.

System Input System Output
Events and component level metrics (e.g., "API

response time is higher than the SLO of five
seconds")

Alerts or notifications (e.g., "order
fulfillment service is down")

What You Get

∙ Basic information such as the health status of a component — Is it working?
∙ Alerts and notifications when issues occur
∙ Easiest way to get started: many open-source and SaaS solutions are available

Level 2: Observability

Metrics Logs Traces

Why is the system not working?

• This is basic Observability – an evolution of monitoring

• Begins to answer “why” on a limited scale

• Comprehensive metrics, logs and traces
• “The Three Pillars of Observability”

• Necessary for dynamic on-premise, hybrid and cloud environments

Maturity Model Level 2 - Observability

Observability
Observe the behavior of IT environments by capturing metrics, logs, and traces in addition to

events and the health state.

System Input System Output
Level 1 inputs + comprehensive metrics, logs, and

traces
Level 1 outputs plus comprehensive dashboards
with graphs, gauges, flame charts, logs, etc.

What You Get
• Deeper, broader and more holistic view of the overall system health by collecting additional

data from more sources, better supporting the diagnosis of issues
• Ability to discover unknown failure modes in addition to known types of failures
• Beneficial insights from individual types of data— e.g., traces help identify performance

bottlenecks, metrics make excellent KPIs, and logs can be used to find software defects

Level 3: Causal Observability

There is a need to collect and correlate two additional dimensions: Topology and Time

Topology is a map that describes the set of relationships and dependencies between
discrete components in an environment.
Time is the second essential dimension for Level 3.

● Telemetry (such as traces, metrics and logs) and topology values are needed when the
problem starts, not just when it is detected

Causal Observability requires correlation of telemetry (metrics, events, logs, traces) and
topology at every moment in time.

● What did the stack look like before the incident
● How did it change over time
● What components are related and affected by changes
● When a storm of alerts is received, which ones are related to the same root cause

Level 3: Causal Observability
• Bringing it all together:

Topology plus Time = Time-Series Topology

• Shows full context and gives visibility across the IT environment
including seeing business impacts when an issue occurs

• Shows both cause and impact of change

• Could enable automated root cause analysis, impact analysis and alert correlation

• Significantly improves problem resolution times and business outcomes

• Observability Driven Design (ODD) enables Observability of a system throughout
the entire development cycle; it's about encouraging developers to wrap their code
with breadcrumbs that can be traced and increase logging and events at the coding
level

Maturity Model Level 3 – Causal Observability

Causal Observability
Contextualize telemetry data (metrics, traces, events, logs) through a single topology. Correlate all data over time

to track changes as they propagate across your stack.

System Input System Output
Levels 1 and 2 plus time = series topology Levels 1 and 2 plus correlated topology, telemetry and time

data displayed in contextual visualizations, showing the
effects of changes across your stack

What You Get
• Consolidated, clear, correlated, contextual view of the environment’s state, through unification of siloed data in a time-series

topology
• Significant acceleration in root cause identification and resolution times through topology visualization and analysis to

understand cause and effect
• Foundation for basic automated investigations such as root cause analysis, business impact analysis and alert correlation
• Context needed to automatically cluster alerts related to the same root cause, reducing noise and distractions
• Ability to visualize the impact of network, infrastructure and application events on business services and customers

Level 4: Proactive Observability

How can incidents be prevented from even occurring?
• Most advanced level of Observability today

• At Level 4, AIOps is added to the mix

How does AIOps help?
• Sorts through terabytes of data generated by Observability tools

• Applies AI and ML to learn patterns that drive early and accurate responses
• Proactive Observability – detects the anomalies that matter
• Automated remediation

Maturity Model Level 4 – Proactive Observability

Proactive Observability
Uses AIOps to sort through mountains of data and identify the most significant patterns and

impactful events, so teams can focus their time on what matters.

System Input System Output
Levels 1-3 + AI/ML models Levels 1-3 + proactive insights that enable

fast MTTR and prevent failures

What You Get
• New insights into IT environment operations using AI/ML to gather and correlate actionable

information from large volumes of data
• Predictions and anomaly detection that highlight issues before they impact the business
• Greater efficiency and reduced toil as teams focus efforts on the most impactful events
• Improved accuracy of automatic root cause analysis, business impact analysis and alert correlation
• Incident data that is accurate enough to use effectively with automated ITSM and self-healing systems

Challenges with Observability Maturity Levels

Is there a need for Open Observability
Maturity Model?
• Current models are mostly vendor specific,

focus on functions in the tools

Should we focus more on outcomes?
• Unrivaled digital experience
• Flawless and secure digital interactions
• Speed-up innovation
• Optimize operational cost
• Reduce cloud complexity

How do we measure the maturity level?
• Do we focus on the technical aspects or do we

measure the outcomes
• Is the organizations maturity high if they have

AIOps, but don’t have a robust incident or
change management process?

Should we focus more on people and
process?
• Always remember People >> Process >>

Technology
• Panel discussion will explore this

