Observability and Maturity Levels

Lauri Humina, lauri.humina@wakaru.fi
Chief Digital Officer, Wakaru Oy

[linkedin.com/in/laurihumina

Wakaru.

Understanding Observability

Exactly "how” can the internal state of a system be known?

With proper applications in place, forms of communication
called signals are emitted that provide quality information to
monitor the internal state of the system known as Observability

Examples of Signals

Metrics
Events
Logs
Traces

Data emitted and collected from these signals

Telemetry

Wakaru.

Metrics, Events, Logs, and Traces (MELT)

These are the essential data types for Observability. When we instrument everything and use MELT to
form a fundamental working knowledge of connections—the relationships and dependencies within the
system—as well as its detailed performance and health, exemplifies Observability.

l / Metrics are the values pertaining to a A Events are specific sequences of
system/application at a certain point m occurrences that take place within a
| _|_|_|_ intime i " system being monitored
I\ Logsare the original data type; in . Traces, or more precisely,
;®-§ their most fundamental form, logs “distributed traces’, are samples of
=== are essentially lines of text a system causal chains of events or
LOG or application produces when E transactions between different
certain code blocks are executed components in a microservices

ecosystem

Wakaru.

Why Is Observability Important?

Observability provides insight into the functioning of a system and enables teams to make informed
decisions about the system'’s health and performance helping to ensure reliability and availability.

Knowing the internal state of a system

leads to understanding through:

e Betterinsight into system behaviors

* Monitoring system performances

 Helping troubleshoot problems

* Providing real-time monitoring instantly

* |ncreased security

« Being cost effective

e Scalability

“One of the important things that
Observability enables is the ability
to see how your systems behave.”

Josep Prat - Open-Source Engineering
Director

Wakaru.

Who are the consumers of Observability?

Operations Engineer

e Wantstoknow if
systems are meeting
the demands of
customers

« Wantstoreduce
signal to noise ratio in
alerts

» Wantsto correlate
data across
distributed systems
and get to the root
cause faster

« Wantsto know if
systems are
configured with best
practices

« Wantstoknow if all
systems are patched

* Wantsvisibility into
thresholds and
patterns; what is
normal vs an anomaly

QA/Test Engineer

Wants to know how
tests impact the
system

Wants contextual data
about bugs

Wants to know about
test coverage

Wants to understand
how the new features
are functioning

Wants visibility into the
overall health of the
system as tests
execute various areas
of the codebase

Developer

Wants to know how
software can be
optimized

Wants to understand
performance impact of
changes

Wants to be able to
troubleshoot issues

Wants to know how the
pipeline and systems
are performing

Wants to be able to
trace transactions
through the entire
system

Wants contextual
information when
failures occur

Security Engineer

Wants to know if
systems are secure

Wants to know
what/where software
has been deployed

Wants to know patch
versions

Wants to ensure
compliance with
corporate standards
and best practices

Wants to make sure no
new vulnerabilities are
being introduced with
applications as they
are being developed

Get real-time analysis
of security alerts
generated by
applications and
network hardware

Leadership

Wants visibility into
business KPIs

Wants to know about
issues and risks

Wants assurances that
systems are
performing and costs
optimized

Wants visualizations
and reports that
reduce signal to noise
ratio

Wakaru.

Why traditional monitoring is not enough?

Wakaru.

1. Lack of a Holistic Practice Understanding

e Inthe new world of distributed
architecture, software delivery
from multiple teams brings the
challenge of multiple
Observability approaches

« Thiscommonly causes delaysin
finding issues when incidents
occur

Wakaru.

2. Technology Silos

* Delivering software in larger
enterprises ofteninvolves a
mixture of technologies, not
uniform cloud-only deliveries

 Connecting all components to
get the big picture might be
difficult

Wakaru.

3. Lack of Understanding Production

PING
»

- e
' UP’EE ey, i

\ "\’/,4’——" \ "WEB,P&GE\ rc‘ JL ‘/
¥ X TRAE FolGusmist i

N

o

sosfie TN N ANDWIDT

(o 17| wmENVIRONMENT |
DISK USAGE = T4 i N P
DATABASE I~ o

_,/

MEMORY USA

§ e BACKELS

The move to the cloud is often
not the only transformation
that is happening. It goes hand
in hand with build, test,
pipeline automation, and
Observability.

Teams may accelerate

in deployment frequency, but
without good Observability in
place, they may struggle to
understand the impact in
production.

Wakaru.

4. SKill Retention

With so many new practices,
teams might struggle covering all
of them. Building robust Site
Reliability Engineering might be
one of the practices they struggle
with.

High employee churnin teams
means skill retention is
challenging. Hence, Observability
Is key to keep the organizational
knowledge.

5. Ensuring Compliance

Cloud and container deployments combined with Cl/CD make it much
easier to deploy continuously and push out new services in minutes.

However, being compliant - knowing who does what, when - becomes
more important than ever before.

STANDARDS

{POLICIES
REGULATIONS RULES

)"

W

Wakaru.

Observability Maturity Model

Observability Maturity Model example

Reliability and
Customer Satisfaction

Observability Maturity.

Level 1 Level 2
Monitoring Observability

Wakaru.

Why Is Maturity Model Level 1Not Enough?

. Limited insightsinto the overall environment - not “big picture” so
the health of the system is not known

. Nolonger adequate for the “always-on” society

. Setting up monitoring requires a lot of manual work

. ldentifies somethingis broken but does not point at what

. Theneedtodoroot cause analysis and impact analysis manually

. Candetect only known types of failures

Wakaru.

Maturity Model Level 1- Monitoring

Uses basic traffic light monitoring to understand the availability of the individual components
that make up the IT services.

Events and component level metrics(e.q., "API Alerts or notifications(e.qg., "order
response time is higher than the SLO of five fulfillment service is down")
seconds")

Basic information such as the health status of a component — Is it working?
Alerts and notifications when issues occur
Easiest way to get started: many open-source and SaasS solutions are available

Level 2: Observability

Why is the system not working?
This is basic Observability - an evolution of monitoring
Begins to answer “why” on a limited scale

Comprehensive metrics, logs and traces
- “The Three Pillars of Observability”

Necessary for dynamic on-premise, hybrid and cloud environments

Metrics Logs Traces

Wakaru.

Maturity Model Level 2 - Observability

Observe the behavior of IT environments by capturing metrics, logs, and traces in addition to
events and the health state.

Level 1inputs + comprehensive metrics, logs, and Level 1 outputs plus comprehensive dashboards
traces with graphs, gauges, flame charts, logs, etc.

Deeper, broader and more holistic view of the overall system health by collecting additional
data from more sources, better supporting the diagnosis of issues

Ability to discover unknown failure modes in addition to known types of failures

Beneficial insights from individual types of data— e.qg., traces help identify performance
bottlenecks, metrics make excellent KPlIs, and logs can be used to find software defects

Level 3: Causal Observability

There isaneedto collect and correlate two additional dimensions: Topology and Time

Topology is a map that describes the set of relationships and dependencies between
discrete components in an environment.

Time is the second essential dimension for Level 3.
e Telemetry(such astraces, metrics and logs)and topology values are needed when the

problem starts, not just when it is detected

Causal Observability requires correlation of telemetry (metrics, events, logs, traces)and
topology at every moment in time.

What did the stack look like before the incident
How did it change over time

What components are related and affected by changes
When a storm of alertsis received, which ones are related to the same root cause

Wakaru.

Level 3: Causal Observability

 Bringing it all together:
Topology plus Time = Time-Series Topology

 Shows full context and gives visibility across the IT environment
including seeing business impacts when anissue occurs

 Shows both cause and impact of change
* Could enable automated root cause analysis, impact analysis and alert correlation
« Significantly improves problem resolution times and business outcomes

* Observability Driven Design (0DD) enables Observability of a system throughout
the entire development cycle; it's about encouraging developers to wrap their code
with breadcrumbs that can be traced and increase logging and events at the coding
level

Wakaru.

Maturity Model Level 3 - Causal Observability

Contextualize telemetry data(metrics, traces, events, logs) through a single topology. Correlate all data over time
to track changes as they propagate across your stack.

Levels Tand 2 plus time = series topology Levels Tand 2 plus correlated topology, telemetry and time
data displayed in contextual visualizations, showing the
effects of changes across your stack

Consolidated, clear, correlated, contextual view of the environment's state, through unification of siloed data in a time-series
topology

Significant acceleration in root cause identification and resolution times through topology visualization and analysis to
understand cause and effect

Foundation for basic automated investigations such as root cause analysis, business impact analysis and alert correlation
Context needed to automatically cluster alerts related to the same root cause, reducing noise and distractions

Ability to visualize the impact of network, infrastructure and application events on business services and customers

Level 4: Proactive Observability

How can incidents be prevented from even occurring?

« Most advanced level of Observability today
« At Level 4, AlOpsisadded to the mix

How does AlOps help?
« Sortsthrough terabytes of data generated by Observability tools

« Applies Aland ML to learn patterns that drive early and accurate responses

Proactive Observability - detects the anomalies that matter
Automated remediation

Wakaru.

Maturity Model Level 4 - Proactive Observability

Uses AlOps to sort through mountains of data and identify the most significant patterns and
impactful events, so teams can focus their time on what matters.

Levels 1-3 + Al/ML models Levels 1-3 + proactive insights that enable
fast MTTR and prevent failures

New insights into IT environment operations using Al/ML to gather and correlate actionable
information from large volumes of data

Predictions and anomaly detection that highlight issues before they impact the business

Greater efficiency and reduced toil as teams focus efforts on the most impactful events

Improved accuracy of automatic root cause analysis, business impact analysis and alert correlation
Incident data that is accurate enough to use effectively with automated ITSM and self-healing systems

Challenges with Observability Maturity Levels

Is there a need for Open Observability How do we measure the maturity level?

Maturity Model? * Dowefocusonthe technical aspects or dowe
measure the outcomes

* |sthe organizations maturity high if they have
AlOps, but don't have arobust incident or
change management process?

* Current models are mostly vendor specific,
focus on functions in the tools

Should we focus more on outcomes?

* Unrivaled digital experience Should we focus more on people and
* Flawlessand secure digital interactions process?

* Speed-upinnovation * Always remember People >> Process >>
* Optimize operational cost Technology

* Reduce cloud complexity e Panel discussion will explore this

Wakaru.

