
V1.0 / © Wakaru 2022 / www.wakaru.fi

Dynatrace AIOps Forum ‘22

How to measure happiness?
Getting started with SLO’s

Lauri Humina, CDO
lauri.humina@wakaru.fi
0408310388

Wakaru Oy
www.wakaru.fi

mailto:lauri.humina@wakaru.fi
http://www.wakaru.fi/

SRE Principles & Practices

© DevOps Institute unless otherwise stated

#1 Operations Is a Software Problem

© DevOps Institute unless otherwise stated

• The basic tenet of SRE is that doing
operations well is a software
problem

• SRE should therefore use software
engineering approaches to solve
that problem

• Software engineering as a
discipline focuses on designing
and building rather than operating
and maintaining

Estimates suggest that anywhere between 40% and 90% of the total cost
of ownership are incurred after launch

#2 Service Levels

SLOs need consequences if they are violated

• A Service Level
Objective (SLO) is an
availability target for a
product or service (this is
never 100%)

• In SRE services are
managed to the SLO

© DevOps Institute unless otherwise stated

#3 Toil

SREs must have time to make tomorrow better than today

• Any manual, mandated
operational task is bad

• If a task can be automated
then it should be automated

• Tasks can provide the "wisdom
of production" that will inform
better system design and
behavior

© DevOps Institute unless otherwise stated

#4 Automation

• Automate what is currently done
manually

• Decide what to automate, and how
to automate it

• Take an engineering-based
approach to problems rather than
just toiling at them over and over

• This should dominate what an SRE
does

• Don’t automate a bad process – fix
the process first

© DevOps Institute unless otherwise stated

SRE teams have the ability to regulate their workload

#5 Reduce the Cost of Failure

© DevOps Institute unless otherwise stated

• Late problem (defect)
discovery is expensive so SRE
looks for ways to avoid this

• Look to improve MTTR (Mean
Time to Recover/Repair)

• Smaller changes help with
this

• Canary deployments

Failure is an opportunity to improve

#6 Shared Ownership

© DevOps Institute unless otherwise stated

• SRE's share skill sets with product
development teams

• Boundaries between “application
development” and “production”
(Dev & Ops) should be removed

• SRE's "shift left" and provide
"wisdom of production" to
development teams

Incentives across the organization are not currently aligned

SLO’s – Service Level Objectives

© DevOps Institute unless otherwise stated

What is an SLO?
• An SLO (“Service Level Objective”) is a goal for

how well a product or service should operate

• SLO’s are tightly related to the user experience
– if SLO’s are being met then the user will be
happy

• Setting and measuring service level objectives
is a key aspect of the SRE role

• The most widely tracked SLO is availability

• Products and services could (and should) have
several SLO’s

SLO’s are about making the user experience better
© DevOps Institute unless otherwise stated

SLO’s Are for Business

“Before getting into the
technical details of a SLO, it
is important to start the
conversation from your
customers’ point of view:
what promises are you trying
to uphold?”

Ben McCormack, VP Operations,
Evernote

© DevOps Institute unless otherwise stated

Yaroslav Molochko
SRE Team Lead
AnchorFree

Example 1: SLO’s & Error Budgets
• We decide that 99.9% of web requests

(www.....) per month should be successful
– this is a “service level objective”

• If there are 1 million web requests in a
particular month, then up to 1,000 of those
are allowed to fail – this is an “error
budget”

• Failure to hit an SLO must have
consequences – if more than 1,000 web
requests fail in a month then some
remediation work must take place – this is
an “error budget policies”

Error
Budget

© DevOps Institute unless otherwise stated

Example 2: SLO’s & Error Budgets

© DevOps Institute unless otherwise stated

• Our service has an average login rate of 1,000 per hour in a
rolling 31-day period (month) – or 744,000 per month (31 * 24
* 1000)

• We want 99% of logins each month to be successful - this is
a “service level objective”

• This equates to ”losing” roughly 7,440 logins a month – this is
the “error budget”

• If more 7,440 logins are lost in a month then we have
breached the error budget.

• We use a service level indicator (SLI) to tell us how many
actual logins we get in a month.

• For a particular month our actual logins were 726,560 -
exceeding our error budget

• Failure to hit an SLO must have consequences
• In this case we instigated a business protection period

preventing new releases – this is the “error budget policy”

Example 3: SLO’s & Error Budgets
• We decide that 75% of support tickets

must complete automatically – this is a
“service level objective”

• If there are 1,000 new support tickets
raised each month 250 can be handled
manually – this is an “error budget”

• Failure to hit an SLO must have
consequences – if more than 250 support
tickets in a month require manual effort
then some engineering work must take
place – this is an “error budget policies”

© DevOps Institute unless otherwise stated

© DevOps Institute unless otherwise stated

“SLO’s are the most
important component
of SRE.”

Lyon Wong, co-founder,
Blameless - the SRE Platform

Adoption of SLO’s

© DevOps Institute unless otherwise stated

According to the 2019
Catchpoint SRE Survey the

most popular SLO’s are:

Availability 72%
Response time 47%

Latency 46%
We don’t have SLOs 27%

Global SRE Pulse 2022

Dynatrace state of SRE 2022

Error Budgets

© DevOps Institute unless otherwise stated

© DevOps Institute unless otherwise stated

“100% is the wrong
reliability target for

basically everything.”
Benjamin Treynor Sloss, VP 24x7 Engineer

at Google

Error Budgets
How much risk a service is willing to tolerate.

• SLO’s introduce a constraint
on the amount of time
available
• A service with a “three-nines”

availability SLO requires all
issues in a month to be fixed
inside 43 minutes
• This time includes issue

identification, alerting,
messaging, triage and fix

You can see why appropriate SLO’s for services are so important

How much down time is allowed for service issues?

© DevOps Institute unless otherwise stated

Error Budgets

Error Budgets – Good and Bad

Bad Good
We have error budgets in SRE
as going over budget usually
means someone somewhere
will have to work over-time or
respond to out-of-hours issues.
Not hitting 99.9% of HTTP
requests in a month usually
means scalability issues so
“ops” need to do something

On the other hand SRE
practices encourage you to
strategically burn the budget
to zero every month, whether
it’s for feature launches or
architectural changes. This
way you know you are running
as fast as you can (velocity)
without compromising
availability

© DevOps Institute unless otherwise stated

Error Budgets – Fixed?

© DevOps Institute unless otherwise stated

• But watch out – high-risk
deployments or large ”big-bang”
changes have more likelihood of
issues and therefore more chance of
the error budget being blown
• This should encourage the Lean

preference for small changes
(”smaller batch size”) to stay within
the error budget.
• In some cases the error budget may

need to change to accommodate
complex releases but this needs to
be agreed between Dev and Ops
and the Business

Error Budget Policies

© DevOps Institute unless otherwise stated

Consequences

“There will be no new feature
launches allowed. Sprint
planning may only pull post-
mortem action items from the
backlog. Software
Development Team must
meet with SRE Team daily to
outline their improvements.”
Jennifer Petoff, Google

© DevOps Institute unless otherwise stated

Ben McCormack
VP Operations

Benefits

• Consistent focus on the user experience, whilst obtaining the
benefits of cloud adoption

• Join clarity around service availability and downtime
• Monitoring the right things, from a user perspective

“We needed to
ensure the move to
GCP (Google Cloud

Platform) did not
dilute or mask our

commitment to our
users.”

CASE STORY: Evernote

“We wanted to ensure we initially focused on the most
important and common customer need: the

availability of the Evernote service for users to access
and sync their content across multiple clients. Our SLO

journey started from that goal.”

© DevOps Institute unless otherwise stated

SLI’s – Service Level Indicators

Let’s Revisit an Earlier Example
• We decided that 99.9% of web requests

(www.....) per month should be successful
– this was the “service level objective”

• If there were 1 million web requests in a
particular month, then up to 1,000 of those
were allowed to fail – this was the “error
budget”

• In this example the “service level
indicator” (SLI) is “web requests” so we
need a way to track and record this data

© DevOps Institute unless otherwise stated

© DevOps Institute unless otherwise stated

SLI Measurement

While many numbers can function as an SLI, it is generally
recommended to treat the SLI as the ratio of two numbers: the
number of good events divided by the total number of events.
For our example this is:

• Number of successful (HTTP) web requests / total (HTTP)
requests (success rate)

© DevOps Institute unless otherwise stated

SLO’s & SLI’s

We use monitoring tools to measure SLI’s constantly,
aggregating across suitable time periods

Our SLO’s are what we expect - monitoring our SLI’s will tell us if
we are meeting a SLO or not – they also tell us how much of our
error budget is left (if any)

© DevOps Institute unless otherwise stated

SLO’s, SLI’s & Observability
• SLO’s are from a user perspective and help identify what is

important
• E.g. 90% of users should complete the full payment transaction in less

than one elapsed minute
• SLI’s give detail on how we are currently performing
• E.g. 98% of users in a month complete a payment transaction in less

than one minute
• Observability gives use the normal state of the service
• 38 seconds is the “normal” time it takes users to complete a

payment transaction when all monitors are healthy

CASE STORY: Kudos Engineering

Benefits
• We now have SLOs and an Error Budget, all of our request-based service with

dashboards and alerting in place to inform us if we consume too much of our
Error Budget.

• We then use Elasticsearch Heartbeat to monitor our internal only APIs and
services. The SLOs for the internal services are also stored in Google Datastore
and updated by the same Kubernetes cronjob to keep consistent dashboards.

Tim Little

“Choosing an SLI normally involves a bit of a discussion
around where you should measure your objective. For
example, we could choose to measure our SLI from the
web server logs. However if do that we will be missing
requests that do not get to the application, like failures
on the load balancer or uncaught exceptions in the
application”

….

We started by auditing
all the services that were
in production, what they
are being used for and
most importantly how
resilient and reliable

they need to be. We
also created a pre-

launch checklist to help
consider SLOs, alerting
and disaster recover at

inception of a new
service.

Example – Kudos’s SLO journey

• What’s wrong with SLI on Webserver Logs?
• You will be missing requests that do not get to the application, like failures on the load balancer or

uncaught exceptions in the application

• How about Client-side SLI using client-side instrumentation such as analytics tools or frontend
libraries?
• You will be measuring the customer’s internet connection and their phone/laptop/tablet reliability

• Example: Using synthetic client probes to check our ordering system response every 1 minute.
• SLO can be 99.9% of remote probes sent every 1-minute return a good response over a 1-month period
• Setup the remote probe to poll services every minute and alert if it is failing

APM

System Boundaries come to the rescue
• Identify the system boundaries within your platform.
• Be logical to define a clear capability. If too broad, it

would defeat the purpose of measurable SLI.
• Identify the customer-facing capabilities that exist at each

system boundary.
• Articulate a plain-language definition of what it means for

each capability to be available.
• Define SLIs for that definition and start measuring to get a

baseline.
• Define an SLO for each capability and track how we perform

against it.
• Iterate and refine our system and fine tune the SLOs

over time.
• For example, if you set an SLI for query response times, do not

look at averages because averages lie.
• Setting SLI @ 99.9th percentile may be edge-case scenario, hence

check on the 95th or 99th percentile to get insights on the vast
majority of queries.

A System of System View

SLIs + SLOs Simple Recipe

Identify
System

Boundaries

• Data Domain driven
approach to identify
business capabilities

• Use the capabilities
to identify system
boundaries

Define SLI for
each

capability

• Address cross
functional issues in
a distributed
system to keep
single service
responsibility

• Data Routing SLI
(Time to deliver
message to
correct
destination) is an
example

• One SLO per
capability goal

• Example:
• Data Ingest

SLO 99.9%
• Data Routing

SLI -> 99.5% of
messages
reached
under 5 sec

Define
Capabilities

for each
system

• Assume that both
your SLOs and SLIs
will evolve over
time.

Measure
Baseline

Define SLO
Targets (per

SLI per
capability)

Rinse &
Repeat!

Large Scale Cultural Shift

SLO
Buy-in

• Leadership Buy-in
• Senior

Management
Support

• Horizontal Role
• Standard Templates
• Training
• Working Examples

Create
Standard

Artifacts for
Use

• Learn the context -
what do Business
users and Engineers
care about?

• Learn and Practice
• Prepare your

Sales Pitch

• Documentation
• Strategy
• Definition
• FAQ
• Implementatio

n step by Step
• Use case example
• Training
• Hands-on workshop

• First Service (Small
or Most frequently
used)

• Dependencies
• Instrumentation
• SLI visualizations

Become a SLO
Expert

• Internal
Meetup/
Conferences

• Engineering Reviews
• Demo days
• Newsletter
• Distribution List
• Community of

SLO experts
• Catalog of SLO case

studies
• Scale out

CommunicateSLO Pilot and
Rollout

Iterate!

Bonus

© DevOps Institute unless otherwise stated

Do SRE teams need Product Managers?
There’s an increasing number of product owners and program managers in SRE and
Platform teams because they have to:

• Build products for users
• Prioritize which reliability investments have the highest impact on customers
• Create the long-term reliability strategy for a company
• Make Build Vs. Buy decisions
• Liaise with several functional groups, including teams outside of engineering
• Define reliability targets and report on performance from the perspective of

customers' expectations
• Manage relationships with new and existing vendors

An SREs plate is full already so the tasks listed above are arguably stealing time from
reliability-ensuring activities.

What do SRE Product Managers do?
Product Managers supporting SRE, and Platform teams are asked to bring traditional product management
techniques, such as user research, roadmap prioritization, and stakeholder alignment into the reliability world.
According to several job descriptions their responsibilities often include:

• Partnering with engineering and product leads to build product roadmaps for SRE
• Creating a long-term strategy for observability and tooling investments, including managing

vendor relationships
• Implementing and maintaining Service-Level Indicators (SLIs) and Service-Level Objectives

(SLOs)
• Creating profiles of users and ensuring SRE’s products addresses their needs
• Championing reliability ownership across non-SRE teams and enabling them to account for &

track reliability of the services they’re responsible for
• Owning the vision and strategy for: incident management, disaster recovery, performance

testing, chaos engineering, etc.

Note: Responsibilities will vary from one organization to another, as well as job titles — SRE Product Lead,
Technical Program Manager, SRE Product Owner, etc.

SLOs are Product Managers best friend
SLO methodology allows Product Managers to:
• Agree with non-engineering functions on the reliability goals needed to meet

or exceed customer expectations
• Communicate about reliability performance with SLIs/SLOs as a standardized

language
• Prioritize roadmap according to SLO historical performance
• Design better alerting and incident management strategies with burn rate

alerting
• Enable teams to own reliability of their services with out-of-the-box service

SLIs
• Monitor data-driven KPIs/OKRs, allowing for weighted, justified and fast

decision making

More product managers step into this area or, most likely, more engineers formally take on a
technical product management role within reliability.

