basware

Simplify Operations, Spend Smarter.

ROLE OF
OBSERVABILITY

in DevOps Transformations

: Alistair Gilbert
A y VP, Product Development « R&D_DevOps

\\ y Basware

AGENDA

basware

What is DevOps

Importance of nonfunctional
requirement management for larger enterprises

How to conduct a DevOps transformation

What is Observability

What makes for a highly observable system

What makes for a good monitoring system

How to achieve great observability

What makes observability so important to DevOps

Increasing observability through dynatrace

WHAT IS
DEVOPS

basware

W H A T I S D E V 0 P S Domains of Change:

Process & Leadership
Team Accountability
Modular Architecture
Small frequent changes
Shifting left

Cl/CD

Ops Automation & NoOps
Observability

Product Organisation

0900

i

I o

To Speed up here

To speed up &

Culture Increase level here

0909

‘

i
SN~

Process & Practices

B Customers
To Reduce here

People, Teams &
Structure

‘ Create & Improve

Systems & Tools

aJay asiwndo

basware

PROCESS & LEADERSHIP

Enables team trust and autonomy

Process Leadership

NV

Product Team

Trusted and enabled to define (at least to some degree) their:
- Development model & practices

- Technology choices

- Testing approach and strategy

- CI/CD practices

- Observability and Monitoring needs and approach

- Release approach and cadence

- etc

basware i = — = == = === == ==========c=====—====c=====oo- ’

L e L L
Coooococoocooocooocooonoooooaoo?

TEAM ACCOUNTABILITY

.

Product Manager

Operations Release, Monitor . Product
: r Anal
Engineer & Maintain natysts Owner
Product
) Quality o
v Assurance v
QA Engineer Development & Architect
Testing
@
basware Development

Team

e R — — — ———— === === —————— - -~
N @ e

Single team responsible for
all aspects of the product
means there are no
handovers and the team as a
whole has complete
accountability for every
aspects of the product.

MODULAR ARCHITECTURE

A solid architectural
strategy must be in place
that sets a clear definition
for functional context
bounding that can drive
appropriate modularisation
of the code base, allowing
for teams to take full
accountability for specific
areas of the product.

Without a clear
architectural plan the
product code base WILL
grow beyond what a single
team is capable of
managing. Specialised sub
teams will emerge and
handovers will be
introduced.

basware

SMALL FREQUENT CHANGES

Change LoC
Contains one or more Addition/ Exhibits

None O

Asingle Contains one or more

Release level of risk

Removal

/Change

A higher
level of risk

Therefore exhibits

A release is far more Small changes are less
Harder to . . .
[likely to cause problems likely to cause issues and
that are significantly if they do they are far
harder and time easier to identify and
consuming to fix rectify or revert

Harder to

fix forward

basware 8

SHIFTING QUALITY LEFT

Employ TDD Practices
Design and Code for testability

Track test coverage and gate

‘r % defects introduced rdine to (o o
% defects found X 640 according to g py
Cost to Repair Ensure local testability at every

opportunity

Build developer tooling to support
local testability

Adopt Code Quality / Complexity
tooling into pipeline and IDEs

Adopt 0SS license compliance
tooling into pipeline and IDEs

Adopt 39 Party library
vulnerability tooling into pipeline

i J‘-——\ and IDEs

X4

v

Coding Unit Functional System Production AdOpt St?:.ltIC.COde ,ana,lySIS toollng
Test Test Test for security into pipeline and IDEs

basware

Includes:
* Product Code
* Full Stack as Code
* Infra as Code
* Platform as code
« Config as code
* Monitoring as code
. etc
* Build Scripts
« Deployment Scripts (and env
config)
« Test Automation &
Orchestration scripts

basware

~ =
-

4, Build & test
using build and test
scripts using sub
set of tests relevant

Trunk based for the action (push

Repo or merge)
3. Push or
merge Hook :'IL_”":
:IIIIII: i
Cl Server Environment

2. Push or
Merge

6. If master,

&
& 7. Executes
N packa]gce and Deployment
\‘ store for CD scripts and
S == executes

smoke tests

‘ _Illlll_
1. Code, build & 7)) vy 3| E
test locally using] 7. Hook or Rind

bqlld and test ELUELY CD Server
scripts executed Package Repo triggered

through CLI,
selecting which

ever tests are
deemed relevant

10

OPERATIONAL AUTOMATION & NO-OPS

A4

‘ O%I Automation

~ No-Ops Repetitive Triggers
_____ Model tasks
Follows % Triggers
Notifies T
. in
v o(\\‘oﬂ g SO[(/[‘/é
| -
Playbooks |- ; -l Triggers .
‘ Effects Effects |

basware

i

OBSERVABILITY

Covered in more detail in subsequent slides

basware

al

Observability - A measure of a how effectively a
product and it’s surrounding monitoring solutions
have been integrated together so as to ensure rapid
detection of problems (without configuration)
together with a detailed understanding of
actionable causal relationships.

/D

12

IMPORTANCE OF
NONFUNCTIONAL
GOVERNANCE

basware

UNCHECKED TEAMS

Process

Coding

languages
supported

basware

Platform
Technologies
used

Enabled by

Architecture
patterns
adopted

Monitoring
solutions in
use

Empowered
Team ')
Leadership

__

In larger complex enterprises / portfolios
Or where strong compliance / regulatory demands exist

Increase in:

Debt & End to end & Inability to apply
Functional non-functional standards across the
overlap defects portfolio as a whole

14

CENTRES OF EXCELLENCE -> STANDARDS

Process Central CI/CD * Leadership

r ®)
5959 B;/ Al

Enforces

COE Teams

__

Examples:

1. Dynatrace is the only observability
tools to be used

2. All logs must contain customer id

3. 80% UT/IT test coverage required

4, All data must be owned by a single
component and only that component
can access the data directly

__

Architecture Non-functional

Requirements

DevOps Standard

Approaches
Patterns
Templates
etc

Development

Testing

N L e e e e e e e e

basware * Explained on next slide ®

CI/CD - ENFORCING STANDARDS

e N
e o This approach allows you to
I B B apply a certain level of non-
: functional limitations /
! 8] % # Own and Maintain CI/CD Pipeline standards across ALL Team
| ! components based upon the
L0 o | non-functional requirements, Layer
O O while still giving
\‘“E;n‘p‘o‘v;ér‘e‘d“’ Based / Derived accountability of CI/CD to the
Team From Calls team
Y
<
_ i 4
Team Pipeline Template
DevOps m Central Pipeline P Not all NFRs can be enforced
Enforce principal A systematically through a
Architecture ofce principa’s centralised pipeline of Central
I . course, hence the need for Layer
Enforce principals process and leadership
Development enforcement as well
Enforce principals
Testing
J

basware

16

CONTROLLED EMPOWERMENT

Process Empowered Team Leadership
Ca e o
5@6 Empowered by VYR Empowered by ,Q,
RN
vV

>
o
©
(<]
o=
©
S
]
[%2]
<
o
O

COE Teams

Central CI/CD
Jov Enforced By

Non-functional
Requirements

Enforced By Enforced By

basware 17

DEVOPS
TRANSFORMATIONS

basware

WHAT IS A DEVOPS TRANSFORMATION

Simply the process of making all the changes described on previous slides
within an organisation

BUT - Each of the individual changes can be very complex in their own right,
especially in large, complex, multi product organisations

AND - all of the domains of improvement depending on one another, so gradual,
iterative change across all the domains in parallel is required

NOTE: This point above is critical to this presentation as it suggests two things
One must deliver improvements to Observability in order to succeed with a DevOps Transformation
One achieve improvements in Observability without improvements in other domains in parallel

basware 19

DOMAIN INTERDEPENDENCE

Enables

More value
more
frequently

(= |
llllllll

basware

KEY TO SUCCESS

basware

DORA Metrics

Green Field
High Engagement
Low Complexity

Maturity

Process alignment
Leadership support
Team accountability /
cohesion / Autonomy
Architectural
modularisation

Cl/CD maturity

TDD Adoption

Testing Pyramid alignment
Local testability
capabilities

Technical Debt handling
Observability

OBSERVABILITY

basware

TERMINOLOGY

What makes a highly OBSERVABLE SYSTEM

. ~,
/ AN

Context tagged Telemetry
(Logs, metrics & traces)

I Generates

[%) [J]

on
2 E Oy
= 0 g o
G >.2
S > 0=
gnh oo

Observability of the
system

basware

What makes a good MONITORING SYSTEM

Monitoring Solutions

Context awareness Context awareness drives

capabilities Telemetry ingestion

Telemetry Ingestion Coverage drives Monitoring
capabilities

solutions Ability
to Observe

Telemetry Corelation

capabilities Corelation Capability level

Telemetry debugging el

capabilities Debugging capability level

drives

Observes / Monitors
The system

Is limited by O Is limited by

O

23

WHAT MAKES
A HIGHLY
OBSERVABLE
SYSTEM

basware

WHAT IS OBSERVABILITY?

Context + telemetry is king

Request to Service A

Client / Session

Network

Host

Virtual Host

Sub-Request to Service B

Application Network
Backend Service

e.g DBs alos

Virtual Host

Application
(%]
Q .
‘5 Backend Service
g e.g DBs
(]
© [%2]

]

\ E 7
N, re7) ,l,
Ny e ,,
(]
G)

Telemetry

basware

Telemetry

Telemetry is the
atomic “unit/ building
block” of
observability.

It is the log entry,
metric or application
trace.

As such how well the
available telemetry
covers the complete
system drives good
observability

Context

Context is the glue
that gives telemetry
meaning in the
context of what the
system is intended to
do and allows for
relationships between
telemetry to be
derived

Context is therefore
critical to good
observability. It allows
the system to be
observed within the
context of the
systems / process
function.

“If observability was a vector,
telemetry would be the magnitude,
context would be the direction”

25

Stack Coverage

Height

TELEMETRY COVERAGE

Service
B

Client

Network Device
Host Devices + OS
Virtual Devices + OS

Application

Backend Service

Breadth = components / sub systems / services

basware

Good Telemetry Coverage drives good observability

To have good coverage you need
* Breadth
* Height
* Depth

Breadth is governed entirely by the owning
organisation of the service, they control what
services generate what telemetry

Height & Depth is ultimately governed by the
owning organisation as well, but is done so in two
different ways.

« Application and Client layer coverage is governed by how well the
organisation decide to generate logs, metrics and traces information
within the code of the product

« The other layers coverage is governed by the technology choices
made and configuration parameters that are set against these layers.

« E.g Network devices typically will only generate logs and metrics
and will do so only according to how the device is configured

26

TELEMETRY CONTEXT

Service A
Q Client / Session
Network
‘ Host

Virtual Host
Application

Backend Service

basware

Can’t typically inject context

These layers do indeed
generate telemetry and the
telemetry will also have
context. However the context
will be relevant to the
component itself. It is not
typically possible to inject
custom “system” context into
the telemetry as components in
these layers are typically
facilitated through black box /
off the shelf technologies.

Can inject Context

These layers are the layers for
which application code is
created by the owning
organisation. Organisation can
therefore inject rich system
context to the telemetry
through a mechanism known
as instrumentation.

WHAT MAKES
A GOOD MONITORING
SYSTEM

basware

TELEMETRY INGESTION

=D

Collection of Ingest and index Observing System
all Telemetry

Must be capable of

ingesting ALL
Telemetry

Having a monitoring system capable of
ingesting and indexing the entire
volume of the monitoring cube is

critical to good observability.

Way too much data to ingest O Uses

U

\
1
1
1
1
1
1
1
I
1
1

7

basware

TELEMETRY CORELATION

This corelation capability is
critical. The sheer volume of
dynamic data requires the
system to leverage big data
and ML/AI techniques in order
to automatically associated
negative behaviour and trends
to the related underlying
telemetry. The more context
aware the telemetry is the
more accurate and reliable the
associations will be.

Al/ML techniques employed to establish
behaviour expectations on endpoints for
failure rates, response times and availability.
Deviations trigger anomalies

Anomaly

detected

Specific telemetry that drove the
anomalous levels are analysed to
determine common patterns and predict
which telemetry is relevant to the anomaly

Telemetry
related to
anomaly

Having a monitoring
system capable of
detecting anomalies
and corelating these
to truly related
telemetry using an
understanding of
context provided by
the observable
system is critical to
observability.

e e e e e e e e e e e e

Through temporal alignment or due to
physical / network association other
telemetry is tied into the picture

Through context association
secondary telemetry can
be tied into picture

Context Rich
Telemetry

Other Telemetry

basware 30

DEBUGGING CAPABILITIES

Without context example

With context example

~
-,

Observing System

Query, Filter,
Aggregate, sort and
Visualisation
capabilities

«“

O “show me all the error logs that took show me all the error logs related to
invoice payment actions that took place in D

Europe for customer X between these dates.”

component x.”

Low % of
irrelevant data

High % of
irrelevant data
returned

Collection of
all Telemetry

I
i D place between these dates from

S I

returned

I
1
I
1
1
1
1
1
1
I
1
1
1
1
1
1
1
I
'
1
1
1

Corelation
capabilities

i' Having a monitoring system capable of being asked on the fly questions with rich system context included
; in the question and getting relevant and actionable responses is critical to good observability.

“Debugging is the act of asking questions about the behaviour of the system on the fly and
getting answers that allow you to derive actions to improve / correct.”

basware

HOW TO
ACHIEVE GREAT
OBSERVABILITY

basware

HOW TO ACHIEVE GREAT
OBSERVABILITY

Monitoring Solutions

Product :
Strong Ingestion
Good logging strategy - coverage
. Strong Corelation
Context Collection of capabilities
Generating

instrumentation all Telemetry

Context awareness
capabilities
Strong Platform
. Telemetry
technologies correctly debugging
configured e.g. AWS capabilities

basware 33

WHAT MAKES
OBSERVABILITY
SO IMPORTANT
TO DEVOPS

basware

DORA METRICS

A measure of devops success

Ol
° pplie

Software Development Software Deployment

Deployment Frequency

Time to Restore

Service Operations

Availability

FOUR KEY METRICS

1

basware

| S S

35

DORA METRICS
EXPLAINED

Lead Time

Lead time is the time it takes to go from a need being recognised and
accepted to the need being addressed in production.

Deployment Frequency

Proxy for batch size. The more frequently you deploy the smaller the size
of the change. Small batches reduce cycle time, reduce risk and
overhead, improve efficiency, increase motivation and urgency and
reduce cost and schedule growth.

Mean time to restore

Reliability is traditionally measured as the time between failures, but in a
modern software organisation failure inevitable. Thus, reliability is
measured by how long it takes to restore a service when it fails.

Change failure percentage

This metric looks at the percentage of changes made to production

that fail.
36

OBSERVABILITIES ROLE IN GOOD

DORA SCORES
--------------------------- el ——
E" Pre-Prod E capability dev

Anomaly i E
Detection : Cheaper and quicker
m defect resolution

Change Failure Rate

Good Defect /

Quick root
' cause
Good : identification
observability \

Good Defect /

Anomaly

Detection Mean time to
Restore

Quick root
cause

identification
37

INCREASING
OBSERVABILITY
THROUGH
DYNATRACE

basware

INCREASING TELEMETRY COVERAGE

in dynatrace

- Height

« Use OneAgent for servers [VMs

* Serverless - Monitor Lambdas / Azure Functions / Google Cloud Functions

« AWS / Azure / etc Integrations to capture cloud metrics
'

* Breadth

|| EEEEDIED - Monitor everything (or as much as you can) - A Service / microservice ma
T E— rely on multiple other services. It is hard to identify the actual root cause i
data from some services are missing

* Depth

« Add manual instrumentation using OpenTelemetry / OpenTracing to
capture spans / details that are not captured automatically

+ Use OneAgent / Activegate plugins or other Ingestion methods to add
additional data

* Use "custom service detection" to monitor services that are not exposed via
standard communication technologies

* Use "calculated service metrics" to capture additional important business
or technical metrics

Height = Stack Coverage

39

TELEMETRY CONTEXT

in dynatrace

Service A
Client / Session
Network
Host
Virtual Host

Application

Backend Service

basware

Apply User Tags to identify end users (be careful with GDPR)
Use Session and Action Properties to identify other important
client attributes, e.g. Session Id, Tenant Id, cluster Id

Use tagging to group entities together within management zones for
filtering and access
Use metadata for additional information

Use host groups to group similar servers together for ML / Al and applying
settings, e.g. <stagingarea>_<application>_<environment>_<role>

Use Request Attributes to add context to a trace, e.g. method parameters /
variable values

Identify and mark Key Requests so they are treated with higher importance
Add context to logs using fields (json format, csv). Link logs and traces
together using trace Id (Dynatrace can do this automatically)

S9IDJ|

uonoanddy pub
SU0I2Y 1U3IND YulT

40

basware

Simplify Operations, Spend Smarter.

