
Alistair Gilbert
VP, Product Development • R&D_DevOps
Basware

R O L E O F
O B S E R V A B I L I T Y
in DevOps Transformations

2

01 What is DevOps

02 Importance of nonfunctional
requirement management for larger enterprises

03 How to conduct a DevOps transformation

04 What is Observability

05 What makes for a highly observable system

06 What makes for a good monitoring system

AGENDA

07 How to achieve great observability

08 What makes observability so important to DevOps

09 Increasing observability through dynatrace

3

W H A T I S
D E V O P S

44

W H A T I S D E V O P S

Product

Culture

People, Teams &
Structure

Process & Practices

Systems & Tools
Customers

Product Organisation

Create & Improve Delivers Value

To Speed up here

To Reduce here

To speed up &
Increase level here

Domains of Change:
1. Process & Leadership
2. Team Accountability
3. Modular Architecture
4. Small frequent changes
5. Shifting left
6. CI/CD
7. Ops Automation & NoOps
8. Observability

O
ptim

ise here

55

Product Team
Trusted and enabled to define (at least to some degree) their:
- Development model & practices
- Technology choices
- Testing approach and strategy
- CI/CD practices
- Observability and Monitoring needs and approach
- Release approach and cadence
- etc

P R O C E S S & L E A D E R S H I P
Enables team trust and autonomy

LeadershipProcess

Trust &
Autonomy

Must Allow for Must E
xhibit

66

T E A M A C C O U N T A B I L I T Y

Idea-gen

Analysis

Design

Development &
Testing

Quality
Assurance

Release, Monitor
& Maintain

Product

Product Manager

Product
Owner

Architect

Development
Team

QA Engineer

Operations
Engineer

Single team responsible for
all aspects of the product

means there are no
handovers and the team as a

whole has complete
accountability for every
aspects of the product.

77

M O D U L A R A R C H I T E C T U R E

Team

Product

Without a clear
architectural plan the

product code base WILL
grow beyond what a single

team is capable of
managing. Specialised sub

teams will emerge and
handovers will be

introduced.

A solid architectural
strategy must be in place
that sets a clear definition

for functional context
bounding that can drive

appropriate modularisation
of the code base, allowing

for teams to take full
accountability for specific

areas of the product.

88

Also

Also

Change

S M A L L F R E Q U E N T C H A N G E S

A single
Release

Feature

Enhancement
Bugfix

LoC
Addition/
Removal
/Change

None 0
level of risk

Contains one or more Contains one or more Exhibits

A large
Release

Therefore exhibits A higher
level of risk

Harder to
rollback

Harder to
fix forward

A release is far more
likely to cause problems

that are significantly
harder and time
consuming to fix

Small changes are less
likely to cause issues and

if they do they are far
easier to identify and

rectify or revert

99

S H I F T I N G Q U A L I T Y L E F T

Coding Unit
Test

Functional
Test

System
Test

Production

x 640

x 40

X 10

X 4
X 1

Cost to Repair

% defects found

% defects introduced

Shift Left

Employ TDD Practices

Design and Code for testability

Track test coverage and gate
according to testing pyramid

Ensure local testability at every
opportunity

Build developer tooling to support
local testability

Adopt Code Quality / Complexity
tooling into pipeline and IDEs

Adopt OSS license compliance
tooling into pipeline and IDEs

Adopt 3rd Party library
vulnerability tooling into pipeline

and IDEs

Adopt static code analysis tooling
for security into pipeline and IDEs

10

C I / C D

Trunk based
RepoIncludes:

• Product Code
• Full Stack as Code

• Infra as Code
• Platform as code
• Config as code
• Monitoring as code
• etc

• Build Scripts
• Deployment Scripts (and env

config)
• Test Automation &

Orchestration scripts 1. Code, build &
test locally using

build and test
scripts executed

through CLI,
selecting which
ever tests are

deemed relevant

2. Push or
Merge

CI Server

3. Push or
merge Hook

4. Build & test
using build and test

scripts using sub
set of tests relevant
for the action (push

or merge)

5. Notify

Package Repo

6. If master,
package and
store for CD

CD Server
7. Hook or
manually
triggered

7. Executes
Deployment
scripts and
executes

smoke tests

Environment
Environment

1111

O P E R A T I O N A L A U T O M A T I O N & N O - O P S

System

Notifies

Triggers

TriggersFollows

Playbooks
Automation

Traditional
Model

Automated
Model

No-Ops
Model

Repetitive
tasks

Triggers

Effects Effects

12

O B S E R V A B I L I T Y
Covered in more detail in subsequent slides

Observability – A measure of a how effectively a
product and it’s surrounding monitoring solutions
have been integrated together so as to ensure rapid
detection of problems (without configuration)
together with a detailed understanding of
actionable causal relationships.

13

I M P O R T A N C E O F
N O N F U N C T I O N A L
G O V E R N A N C E

1414

U N C H E C K E D T E A M S

LeadershipProcess

Trusted byEnabled by

Empowered
Team

ca
n

le
ad

 to

Increase in:
Coding

languages
supported

Platform
Technologies

used

Architecture
patterns
adopted

Monitoring
solutions in

use

Debt &
Functional

overlap

End to end &
non-functional

defects
etc

In larger complex enterprises / portfolios
Or where strong compliance / regulatory demands exist

Inability to apply
standards across the
portfolio as a whole

1515

COE Teams

DevOps

Testing

Development

Architecture

C E N T R E S O F E X C E L L E N C E - > S T A N D A R D S
LeadershipProcess

Define

Define

Define

Define

• Non-functional
Requirements

• Standard
Approaches

• Patterns
• Templates
• etc

Enforces

Examples:
1. Dynatrace is the only observability

tools to be used
2. All logs must contain customer id
3. 80% UT/IT test coverage required
4. All data must be owned by a single

component and only that component
can access the data directly

Central CI/CD *

* Explained on next slide

1616

C I / C D - E N F O R C I N G S T A N D A R D S

Team Pipeline Template
Central PipelineCreate

Empowered
Team

CI/CD PipelineOwn and Maintain

Based / Derived
From

Create

Enforce principals

Enforce principals

Enforce principals

Calls

Team
Layer

Central
Layer

This approach allows you to
apply a certain level of non-

functional limitations /
standards across ALL

components based upon the
non-functional requirements,

while still giving
accountability of CI/CD to the

team

Not all NFRs can be enforced
systematically through a
centralised pipeline of

course, hence the need for
process and leadership

enforcement as well

COE Teams

Architecture

Testing

Development

DevOps

1717

C O N T R O L L E D E M P O W E R M E N T

Empowered byEmpowered by

Co
ns

tr
ai

ne
d

by

Enforced ByEnforced By

LeadershipProcess Empowered Team

COE Teams

Non-functional
Requirements

Central CI/CD
Enforced By

18

D E V O P S
T R A N S F O R M A T I O N S

19

Simply the process of making all the changes described on previous slides
within an organisation

BUT - Each of the individual changes can be very complex in their own right,
especially in large, complex, multi product organisations

AND – all of the domains of improvement depending on one another, so gradual,
iterative change across all the domains in parallel is required

NOTE: This point above is critical to this presentation as it suggests two things
One must deliver improvements to Observability in order to succeed with a DevOps Transformation
One cannot achieve improvements in Observability without improvements in other domains in parallel

W H A T I S A D E V O P S T R A N S F O R M A T I O N

20

D O M A I N I N T E R D E P E N D E N C E

End to End
Team

Accountability

Context bound
modular

architecture

Team makeup /
structure

Process
enabling team

autonomy
Leadership

exhibiting trust
in teams

CI/CD

Small Frequent
Changes

Higher Quality

Shift Left

Observability

Enables

Enables

Enables

Enables

En
ab

les

Enables

Enables

Enables

En
ab

le
s

Enables

Enables

Enables

Enables

Enables

Enables

Enables

Enables

Enables

En
ab

le
s

Enables

EnablesEnables

Enables

Enables En
ab

les

En
ab

les

Enables
More value

more
frequently

21

• DORA Metrics
• Maturity

• Process alignment
• Leadership support
• Team accountability /

cohesion / Autonomy
• Architectural

modularisation
• CI/CD maturity
• TDD Adoption
• Testing Pyramid alignment
• Local testability

capabilities
• Technical Debt handling
• Observability

• Green Field
• High Engagement
• Low Complexity

K E Y T O S U C C E S S

Pick the team likely to
give best results Measure

Focus on
weakest

measurement

22

O B S E R V A B I L I T Y

2323

T E R M I N O L O G Y

System

Monitoring Solutions
Ge

ne
ra

te
s

Qu
al

ity
 &

Sy

st
em

Co
ve

ra
ge

Dr

iv
es

Observability of the
system

Monitoring
solutions Ability

to Observe

Telemetry ingestion
Coverage drives

Telemetry Corelation
capabilities

Telemetry Ingestion
capabilities

Corelation Capability level
drives

Observes / Monitors
The system

Is limited by Is limited by

Telemetry debugging
capabilities Debugging capability level

drives

Context awareness
capabilities

Context awareness drives

What makes a highly OBSERVABLE SYSTEM What makes a good MONITORING SYSTEM

Context tagged Telemetry
(Logs, metrics & traces)

24

W H A T M A K E S
A H I G H L Y
O B S E R V A B L E
S Y S T E M

2525

W H A T I S O B S E R V A B I L I T Y ?
Context + telemetry is king

Request to Service A

Telemetry with context

Client / Session

Network

Host

Application

Backend Service
e.g DBs

Virtual Host

Ge
ne

ra
te

s

Sub-Request to Service B

Network

Host

Application

Backend Service
e.g DBs

Virtual Host

Context

Context is the glue
that gives telemetry

meaning in the
context of what the

system is intended to
do and allows for

relationships between
telemetry to be

derived

Context is therefore
critical to good

observability. It allows
the system to be

observed within the
context of the

systems / process
function.

Ge
ne

ra
te

s

Telemetry

Telemetry is the
atomic “unit/ building

block” of
observability.

It is the log entry,
metric or application

trace.

As such how well the
available telemetry
covers the complete
system drives good

observability

“If observability was a vector,
telemetry would be the magnitude,
context would be the direction”

Request

2626

T E L E M E T R Y C O V E R A G E
• Good Telemetry Coverage drives good observability
• To have good coverage you need

• Breadth
• Height
• Depth

• Breadth is governed entirely by the owning
organisation of the service, they control what
services generate what telemetry

• Height & Depth is ultimately governed by the
owning organisation as well, but is done so in two
different ways.
• Application and Client layer coverage is governed by how well the

organisation decide to generate logs, metrics and traces information
within the code of the product

• The other layers coverage is governed by the technology choices
made and configuration parameters that are set against these layers.
• E.g Network devices typically will only generate logs and metrics

and will do so only according to how the device is configured

Breadth = components / sub systems / services

He
ig

ht
 =

 S
ta

ck
 C

ov
er

ag
e

Dep
th =

Te
lem

etr
y

Ty
pe G

en
era

ted

Service
A

Service
B

Service
C

Client

Network Device

Host Devices + OS

Virtual Devices + OS

Application

Backend Service

Logs

M
etrics

Traces

27

T E L E M E T R Y C O N T E X T

Service A
Client / Session

Network

Host

Application

Backend Service

Virtual Host

These layers do indeed
generate telemetry and the

telemetry will also have
context. However the context

will be relevant to the
component itself. It is not
typically possible to inject

custom “system” context into
the telemetry as components in

these layers are typically
facilitated through black box /

off the shelf technologies.

These layers are the layers for
which application code is

created by the owning
organisation. Organisation can

therefore inject rich system
context to the telemetry

through a mechanism known
as instrumentation.

Can inject ContextCan’t typically inject context

28

W H A T M A K E S
A G O O D M O N I T O R I N G
S Y S T E M

2929

T E L E M E T R Y I N G E S T I O N

Service
A

Service
B

Service
C

Client

Network Device

Host Devices + OS

Virtual Devices + OS

Application

Backend Service

Logs
M

etrics
Traces Observing System

Must be capable of
ingesting ALL

Telemetry

Collection of
all Telemetry

Way too much data to ingest Uses

Ingest and index

Having a monitoring system capable of
ingesting and indexing the entire
volume of the monitoring cube is

critical to good observability.

3030

Through temporal alignment or due to
physical / network association other
telemetry is tied into the picture

Through context association
secondary telemetry can

be tied into picture

Specific telemetry that drove the
anomalous levels are analysed to

determine common patterns and predict
which telemetry is relevant to the anomaly

AI/ML techniques employed to establish
behaviour expectations on endpoints for

failure rates, response times and availability.
Deviations trigger anomalies

T E L E M E T R Y C O R E L A T I O N

Anomaly
detected

Telemetry
related to
anomaly

Context Rich
TelemetryOther Telemetry

This corelation capability is
critical. The sheer volume of
dynamic data requires the

system to leverage big data
and ML/AI techniques in order

to automatically associated
negative behaviour and trends

to the related underlying
telemetry. The more context
aware the telemetry is the

more accurate and reliable the
associations will be.

Having a monitoring
system capable of

detecting anomalies
and corelating these

to truly related
telemetry using an
understanding of

context provided by
the observable

system is critical to
observability.

3131

Without context example Observing System

D E B U G G I N G C A P A B I L I T I E S

Collection of
all Telemetry

Query, Filter,
Aggregate, sort and

Visualisation
capabilities

Corelation
capabilities

“Debugging is the act of asking questions about the behaviour of the system on the fly and
getting answers that allow you to derive actions to improve / correct.”

“show me all the error logs that took
place between these dates from
component x.”

With context example

“show me all the error logs related to
invoice payment actions that took place in
Europe for customer X between these dates.”

High % of
irrelevant data

returned

Low % of
irrelevant data

returned

Having a monitoring system capable of being asked on the fly questions with rich system context included
in the question and getting relevant and actionable responses is critical to good observability.

32

H O W T O
A C H I E V E G R E A T
O B S E R V A B I L I T Y

3333

H O W T O A C H I E V E G R E A T
O B S E R V A B I L I T Y

Product

Good logging strategy

Strong Platform
technologies correctly

configured e.g. AWS

Monitoring Solutions

Strong Corelation
capabilities

Strong Ingestion
coverage

Collection of
all TelemetryGenerating Ingesting

Good starting
Point

Context
instrumentation

Telemetry
debugging
capabilities

Context awareness
capabilities

Great target

34

W H A T M A K E S
O B S E R V A B I L I T Y
S O I M P O R T A N T
T O D E V O P S

3535

D O R A M E T R I C S
A measure of devops success

Software Development Software Deployment Service Operations

Lead Time Change Failure Rate

Deployment Frequency

Availability

Time to Restore

FOUR KEY METRICS

36

D O R A M E T R I C S
E X P L A I N E D
Lead Time

Deployment Frequency

Mean time to restore

Change failure percentage

Lead time is the time it takes to go from a need being recognised and
accepted to the need being addressed in production.

Proxy for batch size. The more frequently you deploy the smaller the size
of the change. Small batches reduce cycle time, reduce risk and
overhead, improve efficiency, increase motivation and urgency and
reduce cost and schedule growth.

Reliability is traditionally measured as the time between failures, but in a
modern software organisation failure inevitable. Thus, reliability is
measured by how long it takes to restore a service when it fails.

This metric looks at the percentage of changes made to production
that fail.

3737

Pre-Prod

O B S E R V A B I L I T I E S R O L E I N G O O D
D O R A S C O R E S

Good Defect /
Anomaly
Detection

Driv
es

Drives

Quick root
cause

identification

Change Failure Rate

Cheaper and quicker
defect resolution

Drives

Drives

More capacity for
capability dev

Lead Time

Deployment
Frequency

Prod

Good Defect /
Anomaly
Detection

Quick root
cause

identification

Drives

Drives

Drives

Drives
Quicker Delivery of

fixes
Mean time to

RestoreDrives

Good
observability

38

I N C R E A S I N G
O B S E R V A B I L I T Y
T H R O U G H
D Y N A T R A C E

3939

I N C R E A S I N G T E L E M E T R Y C O V E R A G E
in dynatrace

• Depth
• Add manual instrumentation using OpenTelemetry / OpenTracing to
capture spans / details that are not captured automatically
• Use OneAgent / Activegate plugins or other Ingestion methods to add
additional data
• Use "custom service detection" to monitor services that are not exposed via
standard communication technologies
• Use "calculated service metrics" to capture additional important business
or technical metrics

• Height
• Use OneAgent for servers / VMs
• Serverless - Monitor Lambdas / Azure Functions / Google Cloud Functions
• AWS / Azure / etc Integrations to capture cloud metrics

• Breadth
• Monitor everything (or as much as you can) - A Service / microservice may
rely on multiple other services. It is hard to identify the actual root cause if
data from some services are missing

4040

T E L E M E T R Y C O N T E X T
in dynatrace

• Apply User Tags to identify end users (be careful with GDPR)
• Use Session and Action Properties to identify other important

client attributes, e.g. Session Id, Tenant Id, cluster Id

• Use tagging to group entities together within management zones for
filtering and access

• Use metadata for additional information

• Use Request Attributes to add context to a trace, e.g. method parameters /
variable values

• Identify and mark Key Requests so they are treated with higher importance
• Add context to logs using fields (json format, csv). Link logs and traces

together using trace Id (Dynatrace can do this automatically)

• Use host groups to group similar servers together for ML / AI and applying
settings, e.g. <stagingarea>_<application>_<environment>_<role>

Link Client Actions
and Application
Traces

Service A
Client / Session

Network

Host

Application

Backend Service

Virtual Host

T H A N K Y O U

